کاربرد شبکه های عصبی مصنوعی در پیش بینی خوردگی فلزات
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم
- نویسنده آرزو جابری
- استاد راهنما محمد قاسم مهجانی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1382
چکیده
پیش بینی رفتار خوردگی جهت محافظه از خوردگی، حایز اهمیت است. به منظور پیش بینی خوردگی می توان از شبکه های عصبی مصنوعی استفاده کرد. در این تحقیق، جهت پیش بینی الف- جریان خوردگی استیل ضد رنگ (316) به عنوان تابعی از غلظت سولفات مس و ph ب- جریان خوردگی استیل ضد رنگ (316) به عنوان تابعی از غلظت سولفات مس و سطح الکترود، ج- جریان خوردگی آلومینیوم رویین شده به عنوان تابعی از غلظت اسید فسفریک و زمان روبین شدن، د- جریان و پتانسیل خوردگی سرب به عنوان تابعی از غلظت سولفات سدیم، ph و زمان رویین شدن، ه- مقادیر اجزاء مدار معادل مربوط به منحنی های امپدانس سرب از شبکه های عصبی مصنوعی پیش خورد استفاده شده است. شبکه های مذکور بر اساس پس انتشار خطا آموزش داده شده اند،. برای تهیه داده های مورد نیاز جهت پیش بینی خوردگی و مقادیر اجزاء مدار معادل از اسپکتروسکپی امپدانس و منحنی های تافل استفاده شده است. نتایج بدست آمده است در تطابق خوبی با داده های تجربی قرار دارند و نشان دهنده برتری شبکه های عصبی مصنوعی بر روش mlr می باشند.
منابع مشابه
کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
متن کاملکاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص های کلان علم و فناوری
ارزیابی تحقیق و توسعه و ارتباط بین تولید علم و تکنولوژی در سطح کلان کشورها به دلیل حجم بالای اطلاعات و تغییر و تحولات سریع در این حوزه محدود بوده است. این پژوهش با هدف درک ارتباط و عملکرد توسعه فناوری در رابطه با فعالیتهای تولید علم در سطح کشورها صورت پذیرفته است که از نوع تحقیقات توصیفی-کاربردی میباشد. هدف ساخت مدلی با استفاده از الگوریتم های پیشرفته است که توانایی پیشبینی شاخص فناوری را ...
متن کاملکاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام
مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...
متن کاملکاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی
برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار میرود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول میرسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از دادههای هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...
متن کاملمقایسه عملکرد شبکه های عصبی مصنوعی و شبکه های عصبی موجکی در پیش بینی درصد شکستگی جو در کمباین برداشت
در این تحقیق، نحوه عملکرد شبکه های عصبی موجکی با شبکه های عصبی مصنوعی در پیش بینی درصد شکستگی دانه های جو در کمباین مقایسه شد. شبکههای مزبور به صورت تابعی از درجه حرارت هوا، سرعت کوبنده، سرعت پیشروی کمباین، فاصله کوبنده و ضدکوبنده در جلو و عقب واحد کوبنده و درصد رطوبت جو آموزش داده شد. شبکه عصبی موجکی (RASP1) با دقت 2/90 درصد در پیش بینی شکستگی دانه جو به عنوان یک جایگزین مناسب برای شبکههای...
متن کاملمقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023